
Chapter 6: Sensitivity Analysis 

Suppose that you have just completed a linear programming solution which will have a 
major impact on your company, such as determining how much to increase the overall 
production capacity, and are about to present the results to the board of directors.  How 
confident are you in the results?  How much will the results change if your basic data 
(e.g. profit per item produced, or availability of a component) is slightly wrong?  Will 
that have a minor impact on your results?  Will it give a completely different outcome, or 
change the outcome only slightly? 

These are the kinds of questions addressed by sensitivity analysis.  Formally, the question 
is this: is my optimum solution (both the values of the variables and the value of the 
objective function) sensitive to a small change in one of the original problem coefficients 
(e.g. coefficients of the variables in the objective function or constraints, or the right hand 
side constants in the constraints)?  If Z or the xi change when an original coefficient is 
changed, then we say that the LP is sensitive.  We could ask, for example, if the Acme 
Bicycle Company solution is sensitive to a reduction in the availability of the metal 
finishing machine from 4 hours per day to only 3 (i.e. a change in the third constraint 
from x1+x2 ≤ 4 to x1+x2 ≤ 3). 

This sort of examination of the impact of the input data on the output results is crucial.  
The procedures and algorithms of mathematical programming are important, but the 
problems that really bedevil you in practice are usually associated with data: getting it at 
all, and getting accurate data.  Some data, necessary for your mathematical model, is 
inherently uncertain.  Consider profit per item, for example, which is approximated from 
estimates of the fluctuating costs of raw materials, expected sales volumes, labour costs, 
etc.  What you want to know from sensitivity analysis is which data has a significant 
impact on the results: then you can concentrate on getting accurate data for those items, 
or at least running through several scenarios with various values of the crucial data in 
place to get an idea of the range of possible outcomes. 

There are several ways to approach sensitivity analysis.  If your model is small enough to 
solve quite quickly, you can use a brute force approach: simply change the initial data 
and solve the model again to see what results you get.  You can do this as many times as 
needed.  At the opposite extreme, if your model is very large and takes a long time to 
solve, you can apply the formal methods of classical sensitivity analysis.  The classical 
methods rely on the relationship between the initial tableau and any later tableau (in 
particular the optimum tableau) to quickly update the optimum solution when changes are 
made to the coefficients of the original tableau.   

Between these two extremes is computer-based ranging.  This is simple information 
about how much certain coefficients can change before the current optimum solution is 
fundamentally changed.  Most commercial LP solvers provide such information.  In this 
introductory book, we will concentrate on this form of sensitivity analysis. 

Practical Optimization: a Gentle Introduction    John W. Chinneck, 2000 
http://www.sce.carleton.ca/faculty/chinneck/po.html 

1



One final observation on the state of the art in sensitivity analysis: you are typically 
limited to analyzing the impact of changing only one coefficient at a time.  There are a 
few accepted techniques for changing several coefficients at once: the 100% rule, and 
parametric programming.  The 100% rule is typically limited to changing only a few 
coefficients at once, with tight limits on how much they can change, and parametric 
programming changes all of the coefficients in ratio.  What is really needed is a method 
that allows all of the coefficients to vary independently.  Recent research by your humble 
author and graduate student Khaled Ramadan provides such a method: it allows all of the 
coefficients to be specified as intervals (e.g. the availability of the metal finishing 
machine is between 3 and 5 hours per day).  Unfortunately this method is not yet 
implemented in commercial LP solvers. 

Simple Computer-Based Sensitivity Analysis 

Most commercial LP solvers return at least the following information: 
• The objective function coefficients for the original variables at the optimum, 

called the reduced costs. 
• The objective function coefficients for the slack and surplus variables at the 

optimum, called the shadow prices or dual prices. 
• The ranges of the original objective function coefficients of the original variables 

for which the current basis remains optimal. 
• The ranges of the right-hand-side constants for the constraints for which the 

current basis remains optimal. 
What is missing from this list is any mention of the constraint coefficients.  The real 
weakness of the simple computer-based sensitivity analysis is that it does not deal with 
changes to constraint coefficients. 

Consider the solution output returned by LINDO solver for the Acme Bicycle Company 
problem, for example: 

LP OPTIMUM FOUND AT STEP      2 
 
       OBJECTIVE FUNCTION VALUE 
       1)     50.000000 
 
 VARIABLE        VALUE          REDUCED COST 
       X1         2.000000           .000000 
       X2         2.000000           .000000 
 
      ROW   SLACK OR SURPLUS     DUAL PRICES 
       2)          .000000          5.000000 
       3)         1.000000           .000000 
       4)          .000000         10.000000 

 
Note that LINDO refers to the objective function as “row (1)”, and the constraints as 
rows (2)–(4).  LINDO also provides the simple ranging information that can be used for 
sensitivity analysis:  
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RANGES IN WHICH THE BASIS IS UNCHANGED: 
 
                          OBJ COEFFICIENT RANGES 
VARIABLE         CURRENT        ALLOWABLE        ALLOWABLE 
                  COEF          INCREASE         DECREASE 
      X1       15.000000         INFINITY         5.000000 
      X2       10.000000         5.000000        10.000000 
 
                          RIGHTHAND SIDE RANGES 
     ROW         CURRENT        ALLOWABLE        ALLOWABLE 
                   RHS          INCREASE         DECREASE 
       2        2.000000         2.000000         1.000000 
       3        3.000000         INFINITY         1.000000 
       4        4.000000         1.000000         2.000000 

There are several things to observe about this output data.  First, note that the reduced 
costs for x1 and x2 are both zero in the top table: why?  Well, the reduced costs are the 
objective function coefficients of the original variables, and since both original variables 
(x1 and x2) are basic at the optimum, their objective function coefficients must be zero 
when the tableau is put into proper form.  This is always true: either the variable is zero 
(nonbasic), or the reduced cost or dual price is zero.  You can see that the pattern holds 
for the slack and surplus variables too.  The dual prices for rows (2) and (4) are nonzero 
at the optimum because they correspond to the two active constraints at the optimum, 
hence their slack variables are nonbasic (value is zero), so the dual prices can be nonzero.  
When both the variable and the associated reduced cost or dual price are zero, then you 
have either degeneracy if the variable is basic, or multiple optima if the variable is 
nonbasic, just as we would expect from the tableau. 

In the ranging information, the 
“allowable increase” and 
“allowable decrease” refer to 
the maximum changes from 
the “current coefficient” or 
“current right hand side” which 
will keep the optimum solution 
at the same basis.  Remember 
that the basis is the division of 
the variables into the basic and 
nonbasic sets.  Now because 
the nonbasic variables identify 
the constraints that are active, 
this amounts to saying the 
following: if you do not change e 
increase” or “allowable decrease”,
same constraints.  But note this ca
space [(x1,x2) for Acme] may cha
objective function may change too
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Figure 6.1: The basis remains the same, but the point in
space is different.
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So what is the advantage of staying at the same optimum basis if both the point and the 
objective function value might change?  The advantage lies in the fact that you can still 
use the solution that you already have to determine what the new point and Z will be after 
the coefficients have changed, as we will see below.  You do not need to re-solve the 
problem from scratch, which can be a huge advantage for very large problems. 

Now let’s look at changing the various coefficients as permitted in simple computer-
based ranging. 

Changing Objective Function Coefficients 

Here is the first important observation about changing the coefficients of the objective 
function: this does not affect the feasible region!  For this reason, the optimum point that 
you found during the original solution of the problem will remain a feasible cornerpoint.  
The worst that can happen is that the original optimum cornerpoint will no longer be 
optimum after the objective function is changed.  In that case, you can probably restart 
the solution at the original optimum cornerpoint and continue iterating until you reach the 
new optimum.  The simple ranging analysis will tell you whether you have to do this or 
not. 

Figure 6.2 shows that the effect of changing a coefficient of the objective function is to 
tilt it.  What the allowable range tells you is essentially the maximum tilt in any direction 
before the optimum moves to a different cornerpoint.  For example, looking at the 
LINDO ranging data above, the objective function coefficient of x2 can increase from 10 
to as much as 15 before the optimum moves to a different basis.  The objective function 
coefficient of x2 can also decrease from 10 to as little as zero before the optimum moves 
to a different basis. 

If you are investigating a change to an objective function coefficient, just compare the 
change to the ranging table.  If the change is more than allowed, then you have no option 

Figure 6.2: Changing a coefficient in the objective function tilts it.  (a) original objective function. 
(b) a tilt which does not change the optimum basis. (c) a tilt which changes the optimum basis. 
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but to re-solve the problem to find the new optimum cornerpoint.  Most commercial 
solvers allow you to re-start from any basis, so if you have previously saved the optimum 
basis, then restart there since the new optimum is likely to be only a few pivots away.  Or 
you can restart the model from scratch in the worst case. 

But what if the proposed change to the objective function coefficient is within the 
allowable range?  Then how do you determine the new values of Z and the variables?  
This is straightforward: 

• The new optimum variable values will be the same as in the original solution 
because the constraints are not changed by a modification to the objective 
function, and we are at the same basis, so we will be at the same place in space. 

• You can calculate the new value of the objective function easily: just substitute 
the old values of the variables into the new objective function.  Alternatively, 
since only one objective function coefficient at a time is changed, you can 
calculate the change in the objective function value by calculating the difference 
due to the changed coefficient. 

For example, is the Acme Bicycle Company solution sensitive if the objective function 
coefficient of x1 is changed from 15 to 25?  As you can see from the tables above, the 
allowable increase for the objective function coefficient for x1 is infinity, so the basis will 
remain the same.  The optimum solution will still be (x1,x2)=(2,2), but the new Z will be 
given by 25x1+10x2 = 25×2+10×2 = 70.  You could also calculate the new Z by looking 
only at the changed coefficient: the change in Z will be 50+2×[(new coefficient)−(old 
coefficient)] = 50+2×(25−15) = 70. 

What about changing the objective function coefficient of x2 from 10 to 25?  As you can 
see from the tables, this is a change of 15 units, which is greater than the allowable 
increase of 5.  This means that the basis will change, so the only way to find out what the 
variable values and Z will be at the new optimum is to restart the solution and continue 
iterating until you reach the new optimum point. 

Changing a Right Hand Side Constant 

Right hand side constants normally represent a 
limitation on a resource, and are likely to change in 
practice as business conditions change.  The 
allowable increase and allowable decrease listed in 
the ranging tables again show by how much a right 
hand side can change before the basis changes.  
Look again at Figure 6.1 to see how the variable 
values and Z might change at the optimum even 
when the basis does not change.  On the other hand, 
these things might not change if a change is made 
to a constraint that is not active at the current 
optimum.  Why?  Because the change may not 
affect the optimum point at all, as shown in Figure 

Figure 6.3: Changing a right hand 
side may not affect the optimum at 
all. 
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6.3. 

 

Figure 6.4, a picture of our favourite Acme 
Bicycle Company problem, shows more 
clearly why there is a limited range in which 
the right hand side can change before the 
basis changes.  Note that a change to the 
right hand side is the same as a parallel shift 
of the constraint.  In Figure 6.4, the basis 
remains the same (intersection of 1st and 3rd 
constraints) while the right hand side of the 
1st constraint is changed, until it has been 
shifted enough that a different constraint 
becomes active, so the basis changes.  As 
the right hand side of the 1st constraint is 
gradually increased, the basis does not 
change until the right hand side reaches a valu
the right hand side moves beyond 4, then the
active, and this defines a different basis (3rd con
right hand side is gradually decreased, then the
side reaches a value of 1 (1st constraint is now
(x2≤3) becomes active, and the basis is defin
constraints. 

Again, you can see in Figure 6.4 how the Z and
the basis is the same, as long as we propose cha
allowable ranges. 

Here is the overall procedure for examining pr
constraints.  First check whether the proposed
changes for the right hand side of the constrain
then you must re-start the solution process an
solution.  If the proposed change is within the 
the variables at the optimum are recovered as fo

• To calculate the new value of Z: 
o If it is a maximization problem:

represents the change in the righ
o If it is a minimization problem: Z

• Getting the values of the variables is h
the “basis inverse” matrix, denoted by
product B-1bnew, where bnew denotes the
the values of the basic variables.  Or, kn
obtained by setting the nonbasic variabl

This method of finding the new Z works becau
coefficient for the slack variable associated wit
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 x1≤1).  Beyond here, the 2nd constraint 
ed by the intersection of the 2nd and 3rd 

 variable values may change even though 
nges to the coefficients that are within the 

oposed changes to the right hand sides of 
 change is within the allowable range of 
t.  If it is not within the allowable range, 
d iterate to the new optimum basis and 
allowable range, then the values of Z and 
llows: 

 Znew = Zoriginal+(dual price)×∆b, where ∆b 
t hand side value (bnew)–(boriginal). 

new = Zoriginal−(dual price)×∆b. 
arder.  If the solver allows you to recover 
 B-1, then you can calculate the matrix 

 new right hand side vector.  This will give 
owing the basis, you can solve the matrix 

es to zero. 
se the dual price is the objective function 
h the changed constraint.  It thus gives the 
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change in Z per unit change in the slack variable for the constraint, and the change in the 
slack variable is identical to any change in the right hand side. 

As an example, let us consider whether the Acme Bicycle Company solution is sensitive 
to a change in the availability of the metal finishing machine from 4 hours per day to 3.5 
hours per day (this is a change to the right hand side of the 3rd constraint, row 4 in the 
LINDO tables).  The tables show that this decrease of ½ unit in the right hand side of the 
3rd constraint is within the allowable range.  Hence the basis will remain unchanged.  The 
objective function value in this maximization problem will change as follows: Znew = 
50+10×(3.5–4) = 45.  We will not recover the new values of the variables.  So the 
solution is sensitive to the proposed change in the availability of the metal finishing 
machine. 

Is the Acme Bicycle Company solution sensitive to a change in the right hand side of the 
2nd constraint from x2 ≤ 3 to x2 ≤ 4?  From the tables, this proposed change is within the 
allowable range, and the constraint dual price is zero (constraint is not active), so no, the 
solution is not sensitive to this change: the Z and variable values will be unaffected. 

Buying Extra Resources 

As mentioned above, the right hand side often represents the amount of a given resource 
that is available.  Given that you are currently limited to a maximum amount b of some 
resource, how much would you willingly pay for an extra unit of b if you could get it?  
This question often comes up when you observe that any possible improvement in your 
objective function value is being limited by the availability of some resource.  For 
example, suppose that the available pool of labour is limiting your increase in profits: 
how much would you pay per unit of extra labour (e.g. by paying overtime, or by hiring 
temporary workers)?  If extra labour can be had cheaply, then you may be able to 
improve your optimum Z considerably, but if extra labour is expensive, then paying for it 
may in fact worsen your optimum Z.  The idea is to determine the upper limit on how 
much to pay before you have a worsening effect on the objective function value. 

Suppose that the Acme Bicycle Company could rent time on another metal finishing 
machine for $8 per day: would this be a good idea?  Here is how the reasoning goes: 

• Acme currently pays nothing per hour for the metal finishing machine because 
they own it. 

• The dual price of the metal finishing constraint is $10 from the LINDO solution.  
This means that each unit increase in the right hand side of the metal finishing 
machine constraint (3rd constraint) increases Z by $10. 

• Hence, we could pay up to $10 for an extra hour of metal finishing machine 
capacity and still increase our overall profit. 

So, yes, we would happily pay $8 for another hour’s worth of use of a metal finishing 
machine. 

The general rule is that you would pay up to (price you are paying now for the 
resource)+(dual price) for each extra unit of a resource.  Note, though, that this analysis 
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only holds if the amount of extra resource that you are planning to buy remains within the 
allowable range as shown in the tables.  Why? Because buying extra resources is the 
same as changing a right hand side coefficient.  If you buy too much of the extra 
resource, then the basis changes and you are no longer sure if the purchase at the given 
price is a good idea. 

 For example, consider buying extra units of capacity for making mountain bikes (i.e. a 
change to the right hand side of the 1st constraint).  In the LINDO tables above, we see 
that the dual price of the 1st constraint (row 2 in the table) is $5 per unit.  Thus if offered 
the chance to buy extra units at a price of $3 per unit, Acme would accept.  But how 
many units should they buy?  The ranging tables show that the maximum increase in the 
right hand side of the 1st constraint is just two units before the basis changes.  You can 
see why in Figure 6.4. 

Suppose that Acme was offered extra units of racer production at a bargain rate of $1 per 
unit.  Should they accept?  This is equivalent to a change in the right hand side of the 2nd 
constraint, and the tables above show that the dual price of the 2nd constraint is 0.  Hence 
Acme should not buy any extra units of this resource.  Look again at Figure 6.3 to see 
why.  The 2nd constraint is not limiting production now, so a slight increase or decrease in 
its right hand side value has no impact on the optimum solution.  There is no point in 
buying any extra racer production capacity. 

A Note on Terminology 

As I’ve defined it here, a model is “sensitive” if a proposed change to an original 
coefficient causes a change to the optimum objective function value or variable values.  
These are the outcomes that materially affect the use of the solution in practice.  
However, to some authors, a model is “sensitive” only if the basis will be changed by the 
proposed change to a coefficient.  As we have seen, the objective function value and the 
variable values can both change even when the basis does not change. 

So beware of miscommunication when talking with others about the sensitivity of a linear 
program! 
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